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PRESSING THIN-WALLED TUBING FROM POWDERED MATERIAL 

S. E. Aleksandrov and L. R. Vishnyakov UDC 621.762 

The technique of pressing through a matrix (extrusion) has been widely used to produce 
bars and tubes from metallic powder [i]. Theoretical studies of this process in various ap- 
paratus have been carried out in [2-15]. 

A solution was obtained in [3] by means of the characteristic method without use of the 
continuity equation, not allowing determination of the density distribution without additional 
assumptions or experimental data. Approximate solutions of the equations of the plastic flow 
theory were given in [2, 6, 9]. In those studies it was assumed that the material followed 
Green's yield condition. In [2-6] the problem is solued by the method of planar cross 
sections. We consider flow in a matrix and a container. The system of ordinary differential 
equationslobtained is solved numerically. In [5, 7-9] the finite element method was used to 
analyze nonsteady extrusion. A rigid-plastic model with cylindrical yield condition was obtained 
in [4]. In that study it was assumed that densification occurred only in the container, while in 
the matrix the material flowed in an uncompressed state. Extrusion without consideration of fric- 
tion on the matrix walls was considered in [ii]. Flow was assumed to be radial. It was shown 
in [12, 13] that in some cases the material must remain rigid in the container while compact- 
ing in the matrix. In those studies conditions were derived under which a flow was realized 
for the process of bar extrusion. Methods involving analysis of the energy of extrusion 
were used in [i0, 14, 15]. In [i0] the velocity field was assumed radial, while in [14] the 
planar section method was used. In [15] flow in both container and matrix was considered. 

Extrusion of bimetallic tubes and bars (in which case the external material has the form 
of a tube) was considered in [9, 16-18]. The planar section method was used in [9, 16, 17], 
while the finite element method was used in [18]. 

Moscow. Kiev. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, No. 2, 
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Maintaining the rigid-plastic model the present study will analyze tube extrusion in a 
mandrel. The Hill method will be used to determine the equilibrium equations, which in con- 
trast to the planar section method relates those equations to the chosen velocity field. At 
the same time a special coordinate system will allow production of a solution for quadratures 
for an arbitrary channel form in the meridional plane. It will be assumed that the material 
follows a meridional creep condition [12]o 

The material flow will be considered axisymmetric, i.e., the phenomenon of stability 
loss will not be considered. For flow in a converging channel of poured materials that phe- 
nomenon has been observed in experiment [19]. However experimental studies [20-23] under 
various conditions of metallic powder extrusion (for both planar and axisymmetric deformation) 
have not detected the stability loss phenomenon. 

The solution will determine the density of the part and its distribution over the defor- 
mation hearth, as well as the stress-deformed state and pressing stress. Conditions will be 
determined under which steady state flow is possible, i.e., without densification in the con- 
tainer. It will be shown that under certain conditions the density of the part reaches a 
limiting value. The case under which the limiting density is reached within the deformation 
hearth will be investigated. The limiting pressure at which the process can be considered 
steady state will be determined. Attributes of the solution related to use of the piecewise- 
linear creep condition will be considered. 

i. Determination of Part Density. A diagram of the pressing process is shown in Fig. 1 
(i, material to be processed; 2, matrix; 3, mandrel; 4, plunger; 5, container). We introduce 
a coordinate system r, 8, % In Fig. 1 the arbitrary plane ~ = const is shown. Let the ma- 
terial obey a pyramidal creep law (Fig. 2) [12]. In the general case of axisymmetric flow 
the stressed state may correspond to any edge or face of the creep surface and the flow re- 
gime must be determined from the solution. In analogy to the known solution of [][3] we as- 
sume that the stressed state corresponds to the edge OA (Fig. 2). Here O is the peak of the 
creep pyramid in the semispace o < 0 (where o is the mean stress). The equations defining 
this edge have the form 

2~s Ps 2~ Ps ( 1 .1  ) 

where ~s is the yield point for pure shear; Ps is the yield point for volume compression; 
a i are the main stresses (i = 1-3). We write the equation of the associated flow law as 

+ : ' - 3.,'  ( 1 . 2 )  
1 ( 1  , 1 )  

[z  i a r e  t h e  m a i n  d e f o r m a t i o n  r a t e s  ( i  = 1 - 3 ) ,  Ez>~O, ~.2>~0]. 
the deformation rates are written as: 

Ovr t (avo I aVr 

t [ cgv w 

In the chosen coordinate system 

?) 
(a -4- r cos O) \oq~ - -  v~ cos 0 , 
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e ~  "~ - ( a i r c o s 0 ) \ 0 ~  + r e s i n 0  + - 7 -  00J '  ( 1 . 3 )  

'/~ ) ) 
%0 = r \ - g O  + Vr , % ~ = ( a + r c o s O ) \ O ~  + v r c ~  0sinO 

(V r ,  V O, V, a r e  p r o j e c t i o n s  o f  t h e  v e l o c i t y  i n  t h e  c o r r e s p o n d i n g  c o o r d i n a t e  d i r e c t i o n s ) .  

Because of axial symmetry v, = 0. Since the velocity v 0 = 0 on the matrix walls and 
the bar, for thin-wall parts we may take v 8 = 0 and v r = v(r). Then the components of the 
deformation rate tensor defined by Eq. (1.3) take on the form 

dv v v cos 0 
~ " = ~ 7 7 '  ~ ~  % ~ = a q - r c o s O "  (I.4) 

The remaining components are equal to zero, i.e., the coordinate directions are the main di- 
rections of the deformation rate tensor. Since the velocity projections v < 0, from Eq. (1.4) 
we obtain tee<0, e~<0. From Eq. (1.2) it follows that sz = Srr" Eliminating the parameters 
Xl and X2 from Eq. (1.2) we obtain 

~ =--(ef+ ~a)(3- 2k~)/(3+@.), k, =.~/p.. (1.5) 

S i n c e  e f + e a = e 0 e + e r  i t  f o l l o w s  f r o m  E q s .  ( 1 . 4 ) ,  ( 1 . 5 )  t h a t  

__dr ~ (3 - -  2ks) (a @ 2r cos O) v 
- - = 0 .  ( 1 . 6 )  dr ' (3§ ( a §  r 

We will consider the steady state stage of the process. In view of the small thickness 
of the tube we take p = p(r) (where p is relative density). Then for the chosen velocity 
field the continuity equation has the form 

] dp [dv (a ~- . r  cos 0~ v 
v T F q - P k T F ~  ( ~ - T c o s 0 ) r  = 0 .  ( 1 . 7 )  

Eliminating dv/dr from this equation, with the aid of Eq. (1.6) we find for the defini- 
tion of p the equation 

dO , (a ~ 2r cosO) ks 
dr ; 6p r ( a + r e o s 0 ) ( 3 + 4 k ~ )  = 0 '  

t o  w h i c h  we w i l l  a p p l y  t h e  s u b r e g i o n  m e t h o d  t o  a v e r a g e  o v e r  t h i c k n e s s  [ 2 4 ] .  We d i v i d e  t h e  
d e f o r m a t i o n  h e a r t h  d e f i n e d  b y  t h e  r a d i i  r o = 1 a n d  R 0 i n t o  s u b r e g i o n s  d e f i n e d  b y  c o o r d i n a t e  
l i n e s  a s  shown i n  F i g .  1 ( s h a d e d  r e g i o n ) .  I n t e g r a t i n g  Eq.  ( 1 . 7 )  o v e r  e ,  i n  v i e w  o f  t h e  a r b i -  
t r a r y  nature of dr we obtain 

dp 6pks 
r [a (01 - -  0o) + r (sin 0~ - -  s in  00) ] d7 + (3 @ 4k~-----~ [a (0 x - -  00) + 2r (sin 0 t - -  s in 0o) ] = 0. ( 1 . 8 )  

F o r  t h e  p r o c e s s  t o  o c c u r  i n  a s t e a d y  s t a t e  m a t e r i a l  o f  c o n s t a n t  d e n s i t y  (O = Po)  m u s t  a p p e a r  
at the matrix input. The solution of Eq. (1.8) for the condition p = P0 at r = R 0 has the 

form 
% Ro 
y (3 Jr- ~s)ok s d o = 6 y  [a (01 --0 0) + 2r (sin Ot -- sin 0 )]o 

r [a (0 t - -  0o) q- r (sin 01 --  sin 00) j" dr. ( 1 . 9  ) 
I) r '  

The d e p e n d e n c e  o f  k s a n d  Xs on  p c a n  b e  w r i t t e n  a s  [25 ]  

k, = ( 1 3 / 2 ) [ ( I  - - , o ) /p ]  172, r ~ = p a k  

(where k is the yield point for pure shear of the solid phase material). Then, integrating 
Eq. (1.9), we find the p distribution along the deformation hearth: 

{ + R o (sin 01 - -  sin 00) ] / 
arcsin (p~/2) _ arcsm" (Po~/2) ' In (9/Po)/]/r~ = ~ In R~ [a (0 t - -  0,) 7 _ r [a (01 - -  0o) + r (sin 0 t - -  sin 0o) ] J" ( 1 . 1 0 )  

I t  i s  e v i d e n t  f r o m  t h i s  e x p r e s s i o n  t h a t  a t  some r = r ,  t h e  d e n s i t y  r e a c h e s  t h e  l i m i t i n g  v a l u e  
p = 1. We d e f i n e  t h e  q u a n t i t y  r ,  f r o m  Eq.  ( 1 . 1 0 ) :  

_ .  (% - %) + [~-~ (%.  0~ ~ + 4c (~n  q - -  s ~  0o)] ~/-~ 
r ,  = 2 (sin O~ --  sin 0o) '" ( 1 . 1 1  ) 

H e r e  c ---- B o [a (0~ - -  0o) + R 0 (sin 0~ - -  sin 0o)]exp [ -  ( 2 / V  3) ( a / 2  - arcsin ; (p~/z)) - In (Po)/1/-5]. I f  p d o e s  n o t  
r e a c h  t h e  l i m i t i n g  v a l u e  t h e n  t h e  d e n s i t y  o f  t h e  p a r t  p ,  i s  d e f i n e d  b y  Eq.  ( 1 . 1 0 )  a t  r = 1.  
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We find the flow rate v from Eq. (1.6), in which we transform from integration over r 
to integration over p. As a result, with consideration of Eq. (1.7) we obtain 

- - v = O .  ( 1 . 1 2 )  
dr 69k s 

We as sume  t h a t  a t  t h e  i n p u t  t o  t h e  d e f o r m a t i o n  h e a r t h  v = - 1 .  Then t h e  b o u n d a r y  c o n d i -  
t i o n  f o r E q .  ( 1 . 1 2 )  h a s  t h e  f o r m  v = - 1  a t  p = P0- I n t e g r a t i o n  o f  Eq. ( 1 . 1 2 )  y i e l d s  

W i t h  c o n s i d e r a t i o n  o f  t h e  e x p r e s s i o n  u s e d  f o r  k s , we w r i t e  

v = exp [ ( 2 / I / 3 )  (arcsin (91/2) _ arcsin (p~/2)) _ In (9/90)/31. ( 1 . 1 4 )  

To f i n d  t h e  v d i s t r i b u t i o n  a l o n g  t h e  d e f o r m a t i o n  h e a r t h  i t  i s  n e c e s s a r y  t o  c o n s i d e r  Eqs .  
( 1 . 1 0 )  and ( 1 . 1 4 )  s i m u l t a n e o u s l y .  

S o l u t i o n s  o f  Eqs .  ( 1 . 1 0 )  and  ( 1 . 1 4 )  r e m a i n  v a l i d  u n t i l  t h e  d e n s i t y  a t  t h e  d e f o r m a t i o n  
hearth reaches the value p = i. This is insured by the condition r.~l [r, from Eq. (i. II)]. 
In the opposite case for 1 ~r~r. the density p = I, and v is found from Eq. (1.6) for k s = 
0. Averaging Eq. (1.6) over % by the subregion method, we have 

dv r [a (01 - -  0o) + r (sin 01 - -  sin 00) 1 7 f  + [a (01 - -  Oc) + 2r (sin 01 - -  sin Oo) ] v = 0 ( 1. !5  ) 

with boundary condition v = v, at r = r,, where v, is the velocity value defined by Eq. 
(1.14) at p = i: 

v,  = - -  exp [ ( 2 / ] / - 5 ) ( ~ / 2 - - a r c s i n  (91oi~ ~- In (9o)13]. 

Integrating Eq. (i.15), we obtain 

~ , r ,  [~ 01 - %) + r ,  ( s in  0~ - s~n %)1 

r [a (01 -- 00) + r (sin 01 -- sin 00) ] 

2 .  D e t e r m i n a t i o n  o f  P r e s s i n g  P r e s s u r e .  We w r i t e  t h e  e q u i l i b r i u m  e q u a t i o n s  u s i n g  H i l l ' s  
m e t h o d  [ 2 6 ] .  I n  t h e  c a s e  o f  t h e  v e l o c i t y  f i e l d  c h o s e n ,  o n l y  a s i n g l e  e q u i l i b r i u m  e q u a t i o n  
remains, which we write in the form 

; [O~rL'-~r + t (OTrO-~(Yr--(YO) 1 
~ - \ - ~  ~- (a ~- r cos 0) ( a ' c ~ 1 7 6 1 7 6  = 0. ( 2 . 1 )  

% 

In view of the small wall thickness we take o~=o~(r)=ol, 6o=oo(r)=de.o~=a,(r)=63 i. We express 
o e and ~, in terms of Or, using the creep condition equations (I.i): 

~0 = o,  = [a~ (3 - -  2 k , )  - -  6~,1 / (3 + 4 k , ) .  ( 2 . 2 )  

I n  Eq.  ( 2 . 1 )  we t r a n s f o r m  f r o m  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  t o  r t o  d i f f e r e n t i a t i o n  
w i t h  r e s p e c t  t o  p w i t h  t h e  a i d  o f  Eq. ( 1 . 7 )  and  i n t e g r a t e  o v e r  O w i t h  c o n s i d e r a t i o n  o f  Eq. 
( 2 . 2 ) .  We a p p l y  a Coulomb f r i c t i o n  law w i t h  c o n s t a n t  c o e f f i c i e n t  o f  f r i c t i o n  f ,  o f  t h e  f o r m  
I ~0 ][0=00= I T~0 lie=01=/] a0 I. By these transformations we obtain 

[ a  0 ]d% (fa + c o s 0 1 + e o s 0 0 )  X 6pks 5= (01-Oo)+2(sinO,-sin o ) j ~ @ / \ r  -- 

X [a, (3 - -  2k  0 - -  6r~l--~, (I~'~o~ -~ rs) -7  (01 - -  00) q- 2 (shl 01 - -  sin 00) = 0. ( 2 . 3  ) 

We d e f i n e  t h e  q u a n t i t y  a / r  f r o m  Eq. ( 1 . 1 0 ) :  

a = 2 (sin 01 -- sin 0o) 

00 --01 @ [(0 t -- 00)~ ~- 4kla - exp (ki) (sin t) 1 -- sin 0o)]1('~ ~ ( 2 . 4 )  

kl = R0 [a (01 - -  00) + R0 (sin 01 - -  sin 0o)1, k~ = - -  ( 2 / ] / - 3 )  (arcsin (p~/'~) - -  arcsin (p~/~') + !n (9/Po)/V'--3)., 

T h u s ,  Eq. ( 2 . 3 )  i s  I i n e a r  i n  Or,  and  i t s  s o l u t i o n  w i t h  b o u n d a r y  c o n d i t i o n  o r -- o r f o r  P = 01 
can be written as 
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a r = e x p  - - j  P l ( t )  dt c : - ~ Q l ( y )  exp  Px( t )  dt d y ,  
L P~ Pt 

p~ (t) = I (2a/r + cos O 1 + cos %) (3 -- 2ks) -- 6k.~ [(% -- %) ~,/r + 2 (sin O~ -- sin 0o)1 
6tk s [(01 - -  0o) a/r -}- 2 (sin 01 - -  sin 0o) l ' ( 2 . 5  ) 

Q1 (Y) : - Ts [/(2a/r -[- cos 01+ cos 00)+(01 - -  0o) a/r + 2 (sin 01 - -  sin 0o) ] 
yk s [(01 -- %) a/r q- 2 (sin 01 -- sin %)] 

In the expressions for pz(t) and QI(Y) the value of the radius r must be expressed in 
terms of t = p and y = p, respectively, from Eq. (2.4). We find the pressing pressure p from 
Eq. (2.5) at p = P0 in the form p = -Or(P0). 

Equation (2.5) defines the stress field for r~r,. If r,~l. then Eq. (2.5) holds force 
over the entire deformation hearth. The boundary condition yields o r = 0, and the value of 
Pl must be found from Eq. (i.i0) for r = i. If r, > i, then in the region 1 ~ r ~ r, Eq. 
(2.1) takes on the form (k s = 0) 

t d c s r  / ( 2 a / r + c ~ 1 7 6 1 7 6  --~ 2[ f (2a/r - '~c~176176 r + 2 a ( O l - - O ~  =0. (2.6) 

k dr a (01 - -  0o) --~ r (sin 01 - -  sin O0) r [ a ( O l - - O o ) + r ( s i n O l - - s i n O o )  ] 

A s o l u t i o n  o f  Eq .  ( 2 . 6 )  c a n  be  o b t a i n e d  f r o m  Eq.  ( 2 . 5 )  by  r e p l a c i n g  P w i t h  r .  T h e n  
/ (2a/t + cos 01 _u cos 0o) 

Pl(t)---- - - a ( 0 1 - 0 o ) n u  t (sin 0 1 -  s in  %) ' 

Q1 (Y) = [2/(2a/y -J- cos 01 + c o s  0o) -~- 4 (sin 01 - -  sin 0o) ] y -~- 2a (01 - -  0o)k. 
y [a (01 - -  % ) .  y (sin 01 - -  sin 0o) ] 

The boundary condition yields Pl = i, o r = 0 (Pl is the coordinate r of the section of mate- 
rial exit from the matrix). In the interval r. <~r<~R o we find the stress distribution from 
Eq. (2.5) for pl = i, and o r from Eq. (2.6) at r = r,. 

When the pyramidal creep condition is used, it is necessary to verify satisfaction of 
the conditions k~0, ~2~0 and 0<~--o~p~ 

To verify the first two conditions we express ~i and ),2 from Eq. (1.2) in the form 

2"1 [2kse(p - -  (3 + 2k.O ~01 6vs [2kss o - -  (3 -~ 2ks) e(p] 6T s 

= (3 + 2ks) ~- --  (2ks) 2 ' %~ = " (3 -~ 2ks) 2 - -  (2ks) 2 

H e n c e ,  a f t e r  i n t e g r a t i o n  we o b t a i n  

- - a ( 3 §  (0l - -  00 ) - -  3r (s in  0 1 - -  sin 0 o ) ~  0 

2k~a (0~ - -  0~) - -  3r (s in  0i - -  sin00) <- 0. 

A n a l y s i s  o f  t h e s e  i n e q u a l i t i e s  s h o w s  t h a t  i n  t h e  r e g i o n  t ~ < r ~ < r ,  t h e y  a r e  a l w a y s  s a t i s -  
f i e l d ,  w h i l e  i n  t h e  r e g i o n  r.,..;~<r~<R o s a t i s f a c t i o n  o f  t h e  i n e q u a l i t y  

a 3 (sin 0~ -- sin 0o) 
-; < 2~ (01- %) 

is necessary. 

Using Eq. (2.4), we obtain a limitation upon the density in the form 

{ (Ol - -  Oh) 2 + 4k la  -~- exp ( k J  (sin 01 - -  sin 0o) } 1/2 + 0o - -  01 -~ 4k,  (0l - -  0o)/3. ( 2 . 7 )  

To verify the inequality 0~--o~p~ we define the quantity-o as 

3 3--~-4k s " 

H e n c e  0 ~ < 4 r ~ - - g o r ~ 3 p , + 4 T , .  S i n c e  or~<0,  t h e n  

lo,] < p , .  (2.8) 

To find the limits of applicability of the steady state process considered above it is 
necessary to compare the pressing force upon extrusion p with the stress at the beginning of 
material deformation in the container Q, i.e., upon precipitation of a ring in the closed 
press form. A theoretical analysis of this process was carried out, for example, in [27, 28]. 
However those studies used Green's creep condition, so that their results cannot be used in 
the present solution. 
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We will note that a situation is possible in which only the portion of the material in 
the container located below the plunger is pressed. This is due to presence of a densifica- 
tion front during pressing in a closed matrix [27, 29]. In the given case the process will 
be a steady state until unpressed material is supplied to the beginning of the matrix. Con- 
sideration of container height is necessary for a general analysis of this process. 

For the present we will limit ourselves to the situation in which densification in the 
container does not occur. If we take a one-dimensional velocity field in the container, as 
in the matrix, then from the creep condition and associated flow law it follows that the 
stressed state corresponds to the peak of the pyramid, i.e., Iol = Ps- In this case Q = Ps 
and the condition for transition of the material within the container into the plastic state 
coincides with condition (2.8), defining the possibility of using the above solution. Hence, 
steady state nature of the process is insured by the condition 

I~rl <Ps for r = ~  o. (2.9) 

3. Calculation Example. As an example we will consider the process of pressing a tube 
at f = 0.05 sec with initial density P0 = 0.6. We will consider the dependence of the density 
distribution on reduction, for which we take the value 6 = (H/h) and independent deformation 
hearth parameters (Fig. i) as follows: D = 50 mm, d = 40 mm, 80 = ~/4. We calculate the re- 
maining geometric characteristics from the expressions 

cos01= I 2 [ cOSOo, r ~  2 (H--h)  cos0 o 

i 
B o=7" 0 ~ ,  a = y d - - 1 -  0 cos0 o, 

Wal l  t h i c k n e s s  o f  t h e  f i n i s h e d  t u b e  h = 3 mm. 

C a l c u l a t i o n  r e s u l t s  f o r  d e n s i t y  d i s t r i b u t i o n  a r e  shown in  F i g .  3 (6 = 8 / 3 ,  2,  4 / 3 ,  l i n e s  
i-3). Satisfaction of condition (2.7) was verified in the calculation process. Together with 
Eq. (2.5) these dependences define the distribution of stress lOrl along the deformation 
hearth (solid lines 1-3 of Fig. 4 for ~ = 8/3, 2, 4/3, with dashed lines showing Ps distribu- 
tion for corresponding 6 values). It is evident from Fig. 4 that the solution at 6 = 8/3 is 
unsuitable, since for r > r M = 2.17 condition (2.8) is unsatisfied. However, since the solu- 
tion retains its force for r< r~, it can be used for analysis of processes with a reduction 
6 < 2.17 [at ~ = 2.17 condition (2.9) is violated], but in this case the density within the 
container cannot be specified arbitrarily, but must be determined from the solution (Fig. 3). 
For example, if 6 = 2, then P0 = 0.75; if 6 = 2, then the solution with pre-specified initial 
density P0 = 0.6 is limiting in the sense that the steady state flow under consideration will 
exist only at 6 < 2. This condition is satisfied by the case 6 = 4/3. 

1. 

2. 

3. 
4. 
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